video thumbnail

Nitric Oxide

Duration: 07:12

Write A New Comment

1 Comments

...

heather.jankowski@*.com

Aug 07 2019, 6:48 am

What is the expectation for discussion when pursuing CME?  The video has been watched but I am unclear what the next step is. 

...

mobeen@*.com

Aug 13 2019, 9:46 pm

Please send a note to support@drbeen.com for help.

This video presents the mechanism of action of the NO and the factors that trigger its release.

 

STUDY NOTES:

AUTOREGULATION - NITRIC OXIDE

Nitric Oxide is called an endothelium derived relaxing factor(EDRF) as it is released by the endothelium of the blood vessel. EDRF cause relaxation of the vascular smooth muscle, and as a result cause vasodilation of the blood vessel. The following factors contribute to the release of nitric oxide from the endothelium:

1) Blood travelling at high velocity causes a shearing effect on the wall of the blood vessels. As the endothelial cells endure a drag force produced due to friction. This results in a mechanical trigger which stimulates release of nitric oxide.

2) Vasoactive Amines are chemical mediators that mediate the release of nitric oxide.

3) The endothelium possesses Histamine H1 receptors that also take part in nitric oxide release.

4) Prostacyclins are also said to be responsible for the release of nitric oxide.

Mechanism of Action of Nitric Oxide 

Nitric oxide, when released, triggers the soluble guanylate cyclase or Guanyl cyclase to convert cGTP to cGMP. Theincreased levels of cGMP cause activation of cGMP dependent kinases which activate the enzyme Myosin Light Chain Phosphatase (MLCP). The activated MLCP enzyme in turn dephosphorylates myosin light chains which results in relaxation of the contractile apparatus. As a result, the vessels become dilated.

Atherosclerosis is the formation of fibromuscular plaques on the endothelium lining of the blood vessel. These atherosclerotic plaques render the endothelium non functional. The endothelium is therefore unable to produce sufficient amounts of nitric oxide. Consequently, the levels of cGMP reduce as less cGTP is converted to cGMP. This reduction in cGMP levels in turn leads to increased levels of Myosin Light Chain Kinases (MLCK) which are enzymes with activity opposite to that of MLCP. The contractile apparatus is activated as MLCK causes cross bridging of actins and myosin heads. The tension produced within the vascular smooth muscle as a result of the vascular smooth muscle contraction in turn causes vasoconstriction of the blood vessel.

Angiotensin II receptors are present on both the vessel endothelium and also the smooth muscle surrounding the blood vessel. Depending on the receptor activated, Angiotensin II can have vasodilating or vasoconstricting effects. At times these opposing effects are balanced out and one effect compensates for the other.   

• The vasoconstricting activity of Angiotensin II is mediated via two pathways. If Angiotensin II binds to the Gq-coupled receptors on the vascular smooth muscle, it will cause direct deactivation of MLCP enzyme. It also causes the production of IP3 which enables the release of calcium ions from the sarcoplasmic reticulum. The calcium ions activate MLCK. The activation of MLCK and inactivation of MLCP results in contraction of the smooth muscles surrounding the blood vessel. This is the vasoconstricting effect.

• The vasodilating effect of Angiotensin II occurs simultaneously to mitigate the vasoconstricting effects to some extent. This effect is mediated by binding of the Angiotensin II to its receptor on the vascular endothelium. This activation of endothelial Angiotensin II receptor cause active release of nitric oxide from the endothelium. This NO diffuses into the vascular smooth muscle and stimulates the activity of guanylate cyclase enzyme which converts cGTP to cGMP. The increases cGMP levels cause activation of the MLCP enzyme. The activated MLCP enzyme in turn dephosphorylates myosin light chains, which results in relaxation of the contractile apparatus of the blood vessel. As a result, the vessels become dilated.

Sildenafil (Viagra) is a drug that is used to treat erectile dysfunction. It is a Phosphodiesterase-5 (PDE-5) inhibitor. PDE-5 is an enzyme that binds to and cleaves cGMP. As a result, the half life of cGMP is reduced as its levels fall. Sildenafil acts by binding to PDE-5 and antagonizes its function. As a result, the cGMP levels remain high for a longer period of time. Therefore, the penile vasculature remains dilated and engorged with blood and, hence, erection is maintained.

 

 

Learning objectives of this video are the following:

1. Mechanism of action of nitric oxide (NO).

2. Factors that trigger  release of NO.

3. How NO is released?

Presented by Dr. Mobeen Syed

Following answers are created by ChatGPT. Occasionally the answer may be harmful, incorrect, false, misleading, incomplete, or limited in knowledge of world. Please contact your doctor for all healthcare decisions. Also, double check the answer provided by the AI below.

Faculty

In addition to the presenter, following authors may have helped with the content writing, review, or approval:

  • Dr. Mobeen Syed

CME, CE, CEU and Other Credit Types:

ACCME Accreditation Statement
The DrBeen Corp is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

AMA Credit Designation Statement
The DrBeen Corp designates this enduring material for a maximum of 0.25 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.


Disclosure Information

In accordance with the disclosure policies of DrBeen Corp and the ACCME (Accreditation Council for Continuing Medical Education), we are committed to upholding principles of balance, independence, objectivity, and scientific rigor in all of our Continuing Medical Education (CME) and Continuing Education (CE) activities. These policies include the careful management and mitigation of any relevant financial relationships with organizations that are not eligible.
All members of the Activity Planning Committee and presenters have disclosed their relevant financial relationships. The DrBeen Corp CE Committee has thoroughly reviewed these disclosures and determined that these relationships are not deemed inappropriate in the context of their respective presentations. Additionally, they are found to be consistent with the educational objectives and the integrity of the activity.

Faculty Disclosures
Dr. Mobeen Syed Author declares no conflict of interest.

Please login to access this content.

Don't have an account?

Start Your Free trial

No credit card information needed.

Instructors

Dr. Mobeen Syed

Dr. Mobeen Syed

MD., MSc., MSc., BSc

Mobeen Syed is the CEO of DrBeen Corp, a modern online medical education marketplace. Mobeen is a medical doctor and a software engineer. He graduated from the prestigious King Edward Medical University Lahore. He has been teaching medicine since 1994. Mobeen is also a software engineer and engineering leader. In this role, Mobeen has run teams consisting of hundreds of engineers and millions of dollars of budgets. Mobeen loves music, teaching, and doing business. He lives in Cupertino CA.

Cardiovascular System

Related Videos