This video will present: Velocity of the blood flow in aorta and smaller arteries. We will also look at the graphs that you might see in the USMLE tests. Formula to calculate the velocity.
PHYSIOLGY LECTURE # 3 STUDY NOTES
HEMODYNAMICS - BLOOD FLOW VELOCITY
The assumptions made in this lecture to understand the velocity of blood flow are as follows:
• 1 meter = 39.37 inches
• 1 millilitre = 1 cubic centimetre
• A cubic centimetre is diagrammed as a small cube which has all its lengths equal to 1 centimetre. Cardiac Output at rest: 5000mL
Let’s assume that the blood vessels are like cylinders and their cross section appear to be circular. Hence, the cross sectional area of a blood vessel is equal to the area of the circle. This can be calculated by the formula A=πr^2. Unit is cm2.
Velocity vs. Flow
Velocity is defined as the speed of blood in unit time.
Flow is the amount of blood moving per unit time.
Velocity and Flow can be integrated in the same equation as per the following formula:
Where: V = velocity
Q = Flow
A = Cross sectional area of the vessel.
This shows that the velocity is inversely proportional to the cross sectional area and directly proportional to the flow of blood in the vessel. This principle is analogous to water pouring out of a water hose. Squeezing the outlet of the hose and making it narrower (decreasing the cross-sectional area) will cause the water to eject with higher than normal speed.
The cross sectional area, of any part of the vasculature is taken as the sum of all the vessels at that level and not of a single vessel individually. Hence, the aorta which is a singlevessel, has the smallest cross sectional area of 2.5cm^2. On the other hand, the sum of cross-sectional areas of all the capillaries is calculated to be 3000cm^2.
The calibre of the blood vessels changes as the aorta divides into arteries, arterioles and capillaries during the process of transporting blood to the tissues. The change in vessel calibre is met with a subsequent change in the blood velocity. The aorta, with a cross sectional area of 2.5cm^2, has blood travelling at a velocity of 20m/min. By the time the blood reaches the capillaries, the velocity of blood drops to 1.6cm/min. This is because the cross sectional area of all the capillaries when summated becomes equal to 3000cm^2, a value which is 1000 folds greater than the cross sectional area of aorta. Following calculations can be used to calculate velocity of blood flowing through the aorta and the capillaries respectively:
Velocity of the blood flow through Aorta:
➢
= {ml and cm^3 can be substituted interchangeably}
=
= 2000 cm/min
= 20 m/min
= 33 cm/s
Velocity of the blood flow through the Capillaries:
➢
= {ml and cm^3 can be substituted interchangeably}
=
= 1.6 cm/min
= 0.016 m/min
= 0.027 cm/s
To summarize, the aorta acts as a conducting vessel as it conducts blood at high velocity to the rest of the body. The capillaries on the other hand, need to contain the blood with minimal velocity which allows for efficient exchange of gases and transport of nutrients and waste products.
In this video we will learn about:
1.Velocity of blood flow.
2.Calculation of blood flow velocity in aorta and arteries.
3.Calculattion of blood flow velocity in capillaries,veins and venules.
4.Significance of blood flow velocity.
5. Representaion of blood flow velocity through graphs.
Following answers are created by ChatGPT. Occasionally the answer may be harmful, incorrect, false, misleading, incomplete, or limited in knowledge of world. Please contact your doctor for all healthcare decisions. Also, double check the answer provided by the AI below.
In addition to the presenter, following authors may have helped with the content writing, review, or approval:
ACCME Accreditation Statement
The DrBeen Corp is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to
provide continuing medical education for physicians.
AMA Credit Designation Statement
The DrBeen Corp designates this enduring material for a maximum of 0.5 AMA PRA Category 1
Credits™.
Physicians should claim only the credit commensurate with the extent of their participation in the
activity.
In accordance with the disclosure policies of DrBeen Corp and the ACCME (Accreditation Council for
Continuing Medical Education), we are committed to upholding principles of balance, independence,
objectivity, and scientific rigor in all of our Continuing Medical Education (CME) and Continuing
Education (CE) activities. These policies include the careful management and mitigation of any relevant
financial relationships with organizations that are not eligible.
All members of the Activity Planning Committee and presenters have disclosed their relevant financial
relationships. The DrBeen Corp CE Committee has thoroughly reviewed these disclosures and determined
that these relationships are not deemed inappropriate in the context of their respective presentations.
Additionally, they are found to be consistent with the educational objectives and the integrity of the
activity.
Faculty | Disclosures |
---|---|
Dr. Mobeen Syed | Author declares no conflict of interest. |
No credit card information needed.
MD., MSc., MSc., BSc
Mobeen Syed is the CEO of DrBeen Corp, a modern online medical education marketplace. Mobeen is a medical doctor and a software engineer. He graduated from the prestigious King Edward Medical University Lahore. He has been teaching medicine since 1994. Mobeen is also a software engineer and engineering leader. In this role, Mobeen has run teams consisting of hundreds of engineers and millions of dollars of budgets. Mobeen loves music, teaching, and doing business. He lives in Cupertino CA.
Luis A Verduzco M.D.
Luis A Verduzco M.D.
Ahmed Zaafran, MD
Luis A Verduzco M.D.
Ahmed Zaafran, MD
Tatyana Travkina, MD
Ahmed Zaafran, MD
Ahmed Zaafran, MD
Ahmed Zaafran, MD
Tatyana Travkina, MD
Ahmed Zaafran, MD
Tatyana Travkina, MD
Ana Crawford M.D., M.Sc.
Ahmed Zaafran, MD
Ahmed Zaafran, MD
Ahmed Zaafran, MD
Dr. Mobeen Syed
Ahmed Zaafran, MD
Dr. Mobeen Syed
Ahmed Zaafran, MD
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Ahmed Zaafran, MD
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Faraaz Bhatti
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
Dr. Mobeen Syed
All information contained in and produced by DrBeen corp is provided for educational purposes only. This information should not be used for the diagnosis or treatment of any health problem or disease.
THIS INFORMATION IS NOT INTENDED TO REPLACE CLINICAL JUDGMENT OR GUIDE INDIVIDUAL PATIENT CARE IN ANY MANNER.
Click here for notice and disclaimer.
Write A New Comment
1 Comments
lvhattersley@*.com
Mar 28 2019, 2:53 pm
I recall physics at school. One equation I learned was F α r4 (i.e. Flow is proportional to the 4th power of the radius) This in itself is academic. It is a proportionality, hence has a variable: the viscosity of the liquid or gas. It was taught in physics and I have never seen it expressed in a physiology class. It certainly describes the physiology of the movement of gasses and liquids (breathing and blood flow) and, by extension, helps us understand certain pathologies: COPD anssd DVT with varicise veins, for example